Enzyme Mechanism

Chapter 6: Pages 96 - 103

Topics

- Types
- Composition
- Specificity
- Catalytic Reaction
- Mechanisms for lowering EA
- Factor affecting enzymatic rate of reaction

Enzyme Function

- Enzyme: biological catalyst that speed up rates of reaction that would otherwise be too slow to support life
- Catalyst: a chemical agent that changes the rate of a reaction without being consumed by the reaction
- Enzymes are unaffected by the reaction and are reusable

Enzyme Composition

Almost all enzymes are composed of proteins Exception: Ribozyme

- RNA that catalyze reactions on other RNA
- Hydrolysis at phosphodiester bond

Enzyme Type

- Simple enzyme: composed only of protein component
- Complex enzyme: an enzyme that requires a cofactor to function in addition to its protein component
 - Apoenzyme: Inactive form of the enzyme because it is missing the cofactor
 - Holoenzyme: Active form of the enzyme; with cofactor

Types of Cofactors

Inorganic: metal ions

– Most common: Zn, Fe, Cu

- Organic: usually from vitamins or their derivatives
 - Prosthetic group: covalently/permanently bonded to apoenzyme (e.g. heme)
 - Coenzyme: non-covalently/reversibly bound to apoenzyme (e.g. NADH)

Types of Cofactors

Enzyme Components

- Enzymes act on substrates at their active site
- Substrate: reactant that enzyme acts on
- Active site: a pocket where the substrate binds; catalytic center where substrate is converted to product

Induced Fit Model

- As the substrate binds, the enzyme changes shape leading to a tighter fit, bringing chemical groups in position to catalyze the reaction.
- Binding of a substrate induces a favourable change in the shape of the active site

Enzyme Specificity: Reaction

- Reaction specific: Enzyme catalysis is specific for one chemical reaction
 - Example: Sucrase is an enzyme that only catalyzes the hydrolysis of sucrose

Sucrase Sucrase $H_2O \longrightarrow Glucose + Fructose$

Most metabolic enzymes can catalyze a reaction in both the forward and reverse direction

Catalytic Reactions

- Chemical reactions between molecules involve both bond breaking and forming.
- Example: sucrose hydrolysis
 - bond between glucose and fructose is broken
 - new bonds formed with H+ and OH-

Enzyme Specificity: Substrate

- Substrate specific: recognize one specific set of substrates related to the reaction it catalyzes
- Example: sucrase can bind all 4 molecules and only these 4
 - 1. Sucrose
 - 2. Water
 - 3. Glucose
 - 4. Fructose

Sucrose + H₂O \longrightarrow Glucose + Fructose

Enzyme Specificity: Substrate

- Specificity can even distinguish between particular configurations (e.g. enantiomers)
 - exception: racemase (an isomerase) which recognize both enantiomers and will interconvert between the two forms
- Substrate specificity due to the fit between the active site and substrate

Enzyme Specificity: Substrate

- the reverse is not true: a given substrate may be acted on by a number of different enzymes
- Examples with substrate glucose:
 - Glucose + glucose \rightarrow maltose
 - Glucose + galactose \rightarrow lactose
 - Glucose + fructose \rightarrow sucrose

Each reaction is catalyzed by a different enzyme and glucose is a substrate for each one

Video: Enzyme Specificity

Tutorial Animation

 http://www.wiley.com//legacy/college/boyer/ 0470003790/animations/enzyme_binding/enz yme_binding.htm

Enzyme Names

- Most enzymes have an -ase ending
- The root name suggests the catalytic reaction, either:
 - what molecule it acts upon or
 - what molecule is generated as the product
- Example: ATPase

Exergonic reaction

- A reaction that releases
 Energy
- But reaction still needs an initial investment of energy to break bonds in the reactant
- Energy usually supplied in the form of heat (thermal energy)

Activation Energy (EA)

- Amount of energy needed to push the reactants over an energy barrier.
- Reactants absorb energy becoming unstable

Thermal agitation increase
speed of molecules and number
& strength of collisions

Peak of instability = transition
 state

Eventually bond breaks

Change in Free Energy (ΔG)

- New bonds release more energy than the initial investment to break bonds.
- Difference in free energy between products and reactants is the ΔG.
- ΔG is negative in an exergonic reaction.

Enzymes lower EA

- Allows transition state to occur at a lower temperature which speeds up the reaction.
- ΔG is unchanged

Mechanism for Lowering EA

- 1. Proximity & Orientation
- 2. Bond strain
- 3. Microenvironment
- 4. Covalent Catalysis

1. Proximity and Orientation

 active site brings reactants closer together and in the correct orientation

2. Bond strain

 active site bends bonds in substrate making it easier to break

3. Microenvironment

• R-groups at the active site provides a favourable environment for the reaction

4. Covalent Catalysis

- Enzymes may bind covalently to substrates in an intermediate step before returning to normal
- Increases reaction rate by:
 - Properly orienting the substrate
 - Changing the chemistry at the active site

Factors Affecting Reaction Rate

- A single enzyme molecule can catalyze thousands or more reactions a second
- Limitations to enzyme activity and thus reaction rate:
 - Substrate concentration
 - Temperature
 - pH
 - Availability of cofactors

Saturation Curve

Substrate concentration on Rate of Reaction

- Low substrate concentrations:
 - Direct correlation between [S] and rate
 - 个[S], 个speed of binding to active sites,
 个reaction rate
- High substrate concentrations:
 - Enzyme saturation: active sites on all enzymes are engaged

- The only way to increase productivity at this point is to add more enzyme molecules.

Temperature Effects on enzyme activity

- 个 temperature, 个
 speed of molecules, 个
 collisions between
 substrate & active site
- Each enzyme has an optimal temperature

If temperature is too
 high, bonds are disrupted
 and the protein
 denatures

pH Effects on enzyme activity

- Each enzyme has an optimal pH
- Most between pH 6-8
- Exception: digestive enzymes
 - those in the stomach work best at pH 2
 - those in the intestine are optimal at pH 8
 - both are suitable for their working environments.

pH Effects on enzyme activity

