EUKARYOTIC CHROMOSOME STRUCTURE

Levels of packing Chemical Modifications Epigenetics

Comparing Prokaryotic and Eukaryotic DNA

	Prokaryote	Eukaryote
DNA	Circular	Linear
Location of DNA	Not in nucleus Nucleoid region (similar to nucleus in eukaryote but not surrounded by a membrane)	Contained in nucleus
DNA bound with proteins?	No. Naked.	Yes

Chromosome Structure

- 2 arms, divided at centromere:
 - p arm petit arm
 - q arm long arm
- Centromeres:
 - region where sister chromatids are connected
 - made up of repetitive sequences

Activity: DNA Packing

- Materials:
 - Thread
 - Scissors
 - pill covers
- Instructions:
 - Cut out 20 m of thread
 - Put the thread in the pill cover

DNA Packing Animation

• Try to ignore the strange music

http://www.youtube.com/watch?v=N5zFOScowqo

Levels of DNA packing

- 1st level: nucleosome
- 2nd level: solenoid / chromatin
- 3rd level: looped domain
- 4th level: metaphase chromosome

Histones

- Proteins around which DNA coils to form chromatin
- Contain positively charged R-groups which bind to the negatively charged DNA (phosphate groups)
 - DNA backbone has a negative charge
 - histones have a positive charge
- 5 types
 - Core: H2A, H2B, H3, H4
 - Linker: H1

First level of packing: Nucleosome

- Nucleosome = DNA + core histones
- DNA wrapped twice around an octamer of core histones consisting of:
 - 2 of each core histone: H2A, H2B, H3, H4
 - Note: H1 is not part of the nucleosome, but is attached to the DNA near the nucleosome
- 10 nm in diameter

Beads-on-a-string

 A nucleosome looks like a bead (histone) with string wrapped around it (DNA)

Second level of packing: Solenoids / chromatin

 stack on top of each other forming the chromatin fiber

Third level of packing: looped domains

- Chromatin fibers forms loops which attach to nonhistone proteins
- Nonhistone proteins form a scaffold
- 300 nm in diameter

http://bioweb.wku.edu/courses/Biol566/Images/ChromatinF09-35.JPG

Fourth level of packing: Metaphase Chromosome

- Looped domains coil and fold, further compacting chromatin
- Result in the characteristic metaphase chromosome seen in karyotypes
- Such packing occurs during mitosis

DNA Packing Video

http://www.hhmi.org/biointeractive/dna/DNAi_packaging_vo2.html

Tutorial

 Discovery of chromosome packaging <u>http://www.dnaftb.org/dnaftb/29/concept/index</u> .html

Gene Regulation Topics

- Review cell cycle
- Metaphase chromosome in mitosis
- Interphase chromatin in G1, S, G2
 - DNA replication
 - transcription

Gene Regulation Defined

- The ability to control whether a gene is actively being transcribed or not
- This regulation can occur at the:
 - Structural level (e.g. supercoiling of DNA)
 - Molecular level (e.g. negative feedback to suppress enzymatic activity)

Cell Cycle

http://www.biologycorner.com/resources/cellcycle2.jpg

Supercoiling

- For a gene to be expressed (transcribed), the chromosome at that region must be uncoiled
- Different levels of supercoiling affects transcription
- Allows control over which genes are expressed

Mitosis: PMAT

- DNA is "inactive" because it is in the most condensed form (metaphase chromosome)
- thus information is inaccessible

Interphase Chromatin

- Much less condensed than during mitosis
- Scaffold may be less defined (e.g. attach to inside of nuclear envelope)
- But order still exists:
 - Each chromosome occupies a restricted area with the nucleus
 - Nucleosome structure stays intact throughout cell cycle
 - Most still maintain the solenoid and looped domain structures

Interphase Chromatin

- Different levels of packing on various regions of the same chromosome
- Euchromatin: loosely packed region on chromatin, active transcription (light stain)
- Heterochromatin: densely packed region on chromatin, inactivated (dark stain)

Chromatin Structure during Transcription

http://upload.wikimedia.org/wikipedia/commons/4/4b/Chromatin_Structures.png

Chromatin Modifications Affecting Gene Expression

http://cnx.org/content/m26565/latest/graphics35.jpg

Methylation

DNA methylation is the addition of a methyl group (M) to the DNA base cytosine (C).

- Attachment of methyl groups (-CH₃) to DNA bases, usually at cytosine
- Occurs after DNA is replicated (S-phase)
- In general, methylation occurs on genes that are not expressed
 - Methylation suppresses gene expression
 - Removing methylation turns genes "on"

Histone Acetylation

- Attachment of acetyl group (-COCH₃) to histones
- Acetylation changes histone shape reducing its grip on the DNA
- Results in more loosely packed DNA, available for transcription
 - Acetylation activates gene expression
 - Deacetylation suppresses gene expression

Chromatin Modifications

Gene "switched on"

B

- Active (open) chromatin
- Unmethylated cytosines (white circles)
- Acetylated histones

Gene "switched off"

- Silent (condensed) chromatin
- Methylated cytosines (red circles)
- Deacetylated histones

MaCS only

 The following sections are for the MaCS grade 12 biology class only

Epigenetics

- Study of heritable changes in gene expression caused by mechanisms other than the DNA sequence
- Modifications often affect both chromatin structure and gene regulation
- Modifications include:
 - DNA methylation
 - Histone acetylation

Me

Genomic Imprinting

- Imprinting: suppression of genes so that only 1 allele is expressed
 - Established in germline cells
 - Maintained in all somatic cells derived from the parent cell
- Most genes are not imprinted: both alleles are expressed
- Imprinted genes:
 - Expressions regulated by epigenetic factors
 - Inactivated gene can be either maternal or paternal
 - Genes are expressed from the non-imprinted allele

http://www.fluorous.com/images/epigenetics.jpg

Epigenetics Videos

- BeginBeforeBirth "What makes us who we are?" (4:11) <u>http://www.youtube.com/watch?v=9AfBsTAQ8zs</u>
- Watch the two videos below and answer the associated questions on the worksheets (download from website)
- PBS NOVA Now "Epigenetics" (13:03) <u>http://www.youtube.com/watch?v=7WEHoCA1hpo</u>
- BBC Horizon "The Ghost in Your Genes" (49:06) <u>http://www.youtube.com/watch?v=dibpxvU4ml0</u>