## **CELLULAR RESPIRATION**

Part 2: Oxidation of Pyruvate Krebs Cycle

## **Recall: Location**

- Glycolysis occurs in the cytoplasm
- Krebs cycle occurs in the matrix
- The end product of glycolysis (pyruvate) must make its way into the mitochondria



### **Oxidative Decarboxylation**



## Pyruvate Oxidation / Oxidative Decarboxylation

- Decarboxylation
- Redox reaction
- Coenzyme A addition



Pyruvate Oxidation / Oxidative Decarboxylation

• Pyruvate (3C) is converted into acetyl-CoA (2C) in order to be brought into the Kreb's cycle



## Pyruvate Oxidation / Oxidative Decarboxylation

#### Reaction type:

- decarboxylation
- redox
- synthesis

#### Enzyme:

- decarboxylase
- dehydrogenase
- synthase

#### Energy: released



## Coenzyme A

- Coenzyme A is a large organic molecule
- Active functional group is a thiol
- also written as CoA-SH



Pyruvate Oxidation / Oxidative Decarboxylation Summary

- 2 pyruvate  $\rightarrow$  2 acetyl-CoA
- 2 CO2 released
- 2 NADH produced

|                       | ATP | NADH | FADH <sub>2</sub> | CO2 |
|-----------------------|-----|------|-------------------|-----|
| Glycolysis            | 2   | 2    | 0                 | 0   |
| Pyruvate<br>Oxidation |     |      |                   |     |
| Krebs                 |     |      |                   |     |
| Subtotal              |     |      |                   |     |
| Conversion<br>in ETC  |     |      |                   |     |

|                       | ATP | NADH | FADH <sub>2</sub> | CO2 |
|-----------------------|-----|------|-------------------|-----|
| Glycolysis            | 2   | 2    | 0                 | 0   |
| Pyruvate<br>Oxidation | 0   | 2    | 0                 | 2   |
| Krebs                 |     |      |                   |     |
| Subtotal              |     |      |                   |     |
| Conversion<br>in ETC  |     |      |                   |     |

## Important molecules in Pyruvate Oxidation and Krebs Cycle

- Pyruvate (pyruvic acid)
- Acetyl CoA
- Citrate (citric acid)
- Malate (malic acid)
- Oxaloacetate (OAA)
- CO2
- ATP
- NADH
- FADH<sub>2</sub>

## **Krebs** Cycle



## **Krebs** Cycle

- Also known as:
  - citric acid cycle (CAC)
  - tricarboxylic acid cycle (TCA)

- Krebs cycle is a cyclical process that:
  - generates more high energy molecules (NADH, FADH2 and ATP)
  - produces additional byproducts known as CO2

## Krebs Cycle Overview

- For each turn of Krebs cycle:
  - two carbons exit
    completely as CO2
  - three NADH and one
    FADH2 are formed
  - One ATP is made by substrate-level phosphorylation



## Activity

- You will given the first step in the Krebs cycle (right) along with the other 6 molecules involved
- Placed the molecules in order based on their structure
- Make sure the molecules cycle back to oxaloacetate
- Once your teacher has checked your answer, then hypothesize the class of enzyme that catalyzes each step of the reaction





Step 1:

- join 2 carbon molecule with a 4 carbon molecule
- Recycling of CoA
- reaction type: synthesis
- enzyme: synthase
- energy: absorbed



Step 2:

- rearrangement of atoms with the help of H2O
- reaction type: isomerization
- enzyme: isomerase
- energy: equilibrium



#### Step 3:

- synthesis of CO2 and NADH
- $6C \rightarrow 5C$
- reaction type:
  - decarboxylation
  - redox
- enzyme:
  - decarboxylase
  - dehydrogenase
- energy: released

Step 4:

- synthesis of CO2 and NADH
- $5C \rightarrow 4C$
- CoA returns
- reaction type:
  - decarboxylation
  - redox
  - synthesis
- enzyme:
  - decarboxylase
  - Dehydrogenase
  - synthase
- energy: released





Step 5:

- ADP phosphorylation to ATP
- CoA recycled
- Reaction type:
  - substrate-level phosphorylation
  - Cleavage
- enzyme:
  - kinase
  - lyase
- energy: released



Step 6:

- FADH<sub>2</sub> (energy molecule) formation
- reaction type: redox
- enzyme: dehydrogenase
- energy: released

## FAD / FADH2

- FAD flavin adenine dinucleotide (oxidized form)
- FADH<sub>2</sub> flavin adenine dinucleotide (reduced form)
- Acts the same way as
  NAD+ → NADH by
  accepting electrons



## FAD / FADH2

- FAD flavin adenine dinucleotide (oxidized form)
- FADH<sub>2</sub> flavin adenine dinucleotide (reduced form)
- Acts the same way as
  NAD+ → NADH by
  accepting electrons





#### Step 7:

- rearranging the molecule for the next reaction
- reaction type: hydration
- enzyme: hydrase
- energy: absorbed



Step 8:

- energy molecule formation & recreating molecules for Krebs cycle
- reaction type: redox
- enzyme: dehydrogenase
- energy: released

## Krebs Cycle Summary

- Per cycle count:
  - 2 CO2 released
  - 3 NADH produced
  - 1 FADH2 produced
  - 1 ATP produced
- Two cycles of Krebs for EACH glucose molecule



|                       | ATP | NADH | FADH <sub>2</sub> | CO2 |
|-----------------------|-----|------|-------------------|-----|
| Glycolysis            | 2   | 2    | 0                 | 0   |
| Pyruvate<br>Oxidation | 0   | 2    | 0                 | 2   |
| Krebs                 |     |      |                   |     |
| Subtotal              |     |      |                   |     |
| Conversion<br>in ETC  |     |      |                   |     |

|                       | ATP | NADH | FADH <sub>2</sub> | CO2 |
|-----------------------|-----|------|-------------------|-----|
| Glycolysis            | 2   | 2    | 0                 | 0   |
| Pyruvate<br>Oxidation | 0   | 2    | 0                 | 2   |
| Krebs                 | 2   | 6    | 2                 | 4   |
| Subtotal              |     |      |                   |     |
| Conversion<br>in ETC  |     |      |                   |     |

|                       | ATP | NADH | FADH <sub>2</sub> | CO2 |
|-----------------------|-----|------|-------------------|-----|
| Glycolysis            | 2   | 2    | 0                 | 0   |
| Pyruvate<br>Oxidation | 0   | 2    | 0                 | 2   |
| Krebs                 | 2   | 6    | 2                 | 4   |
| Subtotal              | 4   | 10   | 2                 | 6   |
| Conversion<br>in ETC  |     |      |                   |     |

#### **Recall: Overall Reaction**

glucose + oxygen  $\rightarrow$  carbon dioxide + water + energy

#### $C6H_{12}O6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$

 $36 \text{ ADP} + 36 \text{ P} \rightarrow 36 \text{ ATP}$ or  $38 \text{ ADP} + 38 \text{ P} \rightarrow 38 \text{ ATP}$ 

|                       | ATP | NADH | FADH <sub>2</sub> |    |
|-----------------------|-----|------|-------------------|----|
| Glycolysis            | 2   | 2    | О                 |    |
| Pyruvate<br>Oxidation | 0   | 2    | 0                 |    |
| Krebs                 | 2   | 6    | 2                 |    |
| Subtotal              | 4   | 10   | 2                 |    |
| Conversion<br>in ETC  | 4   | 30   | 4                 | 38 |

#### **Recall: Overall Reaction**

glucose + oxygen  $\rightarrow$  carbon dioxide + water + energy

#### $C6H_{12}O6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$

 $36 \text{ ADP} + 36 \text{ P} \rightarrow 36 \text{ ATP}$ or  $38 \text{ ADP} + 38 \text{ P} \rightarrow 38 \text{ ATP}$ 

|                       | ATP | NADH | FADH <sub>2</sub> |       |
|-----------------------|-----|------|-------------------|-------|
| Glycolysis            | 2   | 2    | О                 |       |
| Pyruvate<br>Oxidation | 0   | 2    | 0                 |       |
| Krebs                 | 2   | 6    | 2                 |       |
| Subtotal              | 4   | 10   | 2                 |       |
| Conversion<br>in ETC  | 4   | 30   | 4                 | 36-38 |