PHOTOSYNTHESIS PART 2

Calvin Cycle

Adaptations

Factors Affecting Rate

Calvin Cycle

Calvin cycle occurs in the stroma

Calvin Cycle Overview

Cyclical process with 3 phases:

- Carbon fixation: incorporation of CO2
- Reduction: utilization of energy molecules to form organic compound
- Renegeration: regenerates molecules for another cycle

Calvin Cycle Overview

Phase 1: Carbon Fixation

- reaction type: synthesis
- enzyme: synthase (Rubisco)
- energy: absorbed

- CO2 (1c) + 1,5 RuBP (5c) = short
 lived 6C
 intermediate
- 6C molecule split into two 3C molecule known as 3-PGA/PGA/3PG
- Above reaction occurs 3x

Rubisco

- ribulose bisphosphate carboxylase / oxygenase
- large, slow reacting enzyme
 - most enzymes process 1000 reactions / second
 - rubisco processes 3 reactions / second
- plants need large amounts of rubisco for Calvin cycle
 - half the protein in a leaf
 - most abundant protein on Earth

Phase 2: Reduction

Calvin Cycle: Energy Utilization

 ATP phosphorylates each 3-carbon molecule

- reaction type: phosphorylation
- enzyme: kinase
- energy: absorbed

Calvin Cycle: Energy Utilization

- NADPH used to synthesize G₃P
- reaction type: redox
- enzyme: dehydrogenase
- energy: absorbed

Phase 3: Regeneration

- Of the 6 G₃P produced 1 of them exits the cycle to eventually become glucose and other types of organic compounds
- The other 5 G3P continue in the cycle to help regenerate the starting substances

Phase 3: Regeneration

Calvin Cycle: Regenerate Molecules

- G3P resynthesized to 1,5-RuBP
- 5 x 3C (G₃P) → 3 x 5C (R₀BP)
- 15 C in total
- Uses ATP
- reaction type: synthesis
- enzyme: synthase
- energy: absorbed

Adaptations to Limitations

- Photorespiration limitations:
 - C3 plant
- Adaptations to hot, arid conditions:
 - C4 plants
 - CAM plants

C₃ Plants

- Plants whose first organic product of carbon fixation is a 3-carbon compound
- C3 plants
 undergo
 photosynthesis
 as described

C₃ Plants

- Stomata are open during the day / closed at night
- What happens to stomata in hot, arid conditions?

C₃ Plant Limitations

- In hot, arid conditions, plants close the stomata to prevent water loss
- What affect does that have on CO₂ and O₂ concentration?

C₃ Plant Limitations

 Effect of closed stomata on gases:

- CO2 decreases

- O2 increases

Effect on processes:

No change to light reactions

Slow/no Calvin cycle

No glucose produced

Effect on Rubisco

rubisco binds to O₂rather than CO₂

Rubisco

- 2 possible substrates: CO2 or O2
- Carboxylase: binds CO2 yields 2x PGA
- Oxygenase: binds O2 yields 1x PGA and PG

Rubisco Reaction

Phosphoglycollate (PG)

- cannot be converted directly into sugars
- is a wasteful loss of carbon
- to retrieve the carbon from it, plants must use an energy-expensive process called photorespiration

Photorespiration (aka photo-oxidation)

- "photo": occurs in the light
 - unlike photosynthesis, produces no organic fuel (no Calvin cycle)
- "respiration": consumes oxygen (by rubisco)
 - unlike cellular respiration, generates no ATP
- wastes energy and reducing power
- results in the production of dangerous reactive oxygen species (H2O2) in the peroxisome

Why does photorespiration exist?

- Evolutionary baggage:
 - Metabolic relic from earlier time when atmosphere had less O2 and more CO2
 - With so much CO2, rubisco's inability to exclude
 O2 had little impact on photosynthesis
- Modern times:
 - Rubisco's affinity for O2 has a negative impact on crop yields

C₃ Plants: Agricultural Crops

Evolutionary Efficiency

- Atmospheric O2 is 500x higher than CO2
- Yet rubisco fixes on average 4 CO2 for every
 O2

Photosynthetic Adaptations

- 2 other plant types have adapted photosynthesis to dry, arid conditions:
 - C4 plants spatial (structural) separation
 - CAM plants temporal (behavioural) separation

C₄ Plants

Recall:

- Which leaf cells are primarily responsible for the light reactions of photosynthesis?
- What is the by-product of the light reactions?
- How is Rubisco affected by the byproduct?
- What if we moved Rubisco somewhere else?

C4 Plant: Leaf Structure

Stoma

 Bundle-sheath cells tightly packed next to mesophyll cells and around vascular bundle

 Light reactions (O2) kept separate in palisade mesophyll cells

 Calvin cycle (rubisco) confined to bundlesheath cells

 Q: But then how does CO2 get into the bundlesheath cells?

Mechanism:

- Step 1: CO2 added to a phosphoenolpyruvate (PEP) (3C) to form a oxaloacetate (OAA) (4C), then to malate
- CO₂ + PEP → OAA → malate

Mechanism:

- Step 2: 4C compound is exported to bundle-sheath cells where it releases CO2 and a 3C pyruvate
- Step 3a: CO2 is assimilated into the Calvin cycle by rubisco
- Step 3b: Pyruvate returns to the mesophyll cell to be converted back to PEP (3C)

- Mesophyll cells act as a CO2 pump
- Keeps concentration of CO2 in bundle-sheath cells high (10-120x higher than normal) so that rubisco can bind CO2
- But adaptation costs energy

- Can you identify where the reactions (below) come from?
- Hint: cellular respiration

CAM Plants

H₂O Daytime in hot arid conditions: Stomata closed Conserve water Rubiscò no CO2 uptake LIGHT CYCLE REACTIONS Light reactions make ATP and NADPH and O2 Normally Calvin cycle stops CH₂O (sugar) due to low CO2, high O2 but

in CAM...

Nighttime:

- Cooler
- Stomata open
- CO2 enter
- Enzyme PEP carboxylase:
 - Recall: high affinity for CO2
 - $-CO₂ + PEP (3C) \rightarrow OAA (4C)$
- Further converted to an organic acid (malate / malic acid) which is stored in vacuoles of mesophyll cells

Daytime:

- CO2 in malic acid stored in vacuoles from the night is released to run the Calvin cycle
 - Malate (4C) → pyruvate (3C) + CO₂
- Light reactions also occurring so the ATP & NADPH made will help run the Calvin cycle

- Nighttime: CO2
 incorporation into
 organic acids,
 stored in vacuole
- Daytime: Calvin cycle with energy from light reaction and CO₂ from night storage

C4 and CAM Plants

- CO2 is incorporated into organic intermediates which is then released into the Calvin cycle generating an environment that is high in CO2 so that Rubisco isn't binding O2
- C4: initial carbon fixation separated structurally
- CAM: initial carbon fixation separated temporally

Factors Affecting Photosynthesis

- Light intensity
- Carbon dioxide concentration
- Temperature

Light Intensity

- Low-mid intensity: linear response
- Higher intensity: saturation due to other limiting factors in photosynthesis
- Highest intensity: photorespiration
- light compensation point: minimum light intensity at which the leaf shows a net gain of carbon

Light Intensity

factors contributing to saturation

 Rate at which photosynthesis is saturated is increased with temperature and CO₂ levels

CO₂ Concentrations

- Low concentration: CO₂ diffusion limits rate
- High concentration: saturation due to other limiting factors in photosynthesis

CO2 Concentrations

factors contributing to saturation

 Rate at which photosynthesis is saturated is increased with light intensity

Temperature

 Each type of plant has a temperature range where photosynthesis is optimal

Temperature

factors contributing to maximum rate of photosynthesis

Increased CO2
 levels increases
 the maximal rate
 of photosynthesis

Photosynthesis Rate Factors

Factor	Effect on	Rate of photosynthesis
Light intensity	Light reactions	Increase to a plateau (saturation) since Calvin cycle cannot keep up with light reactions
CO2 levels	Calvin cycle	Increase to a plateau since light reactions can not keep up with Calvin cycle
Temperature		Maximum rate can be increased by increasing CO2