BIOTECHNOLOGY

DNA Sequencing Fig 20.12

Human Genome Project

- Genome: an organisms' complete set of DNA
- Human genome has about 3 billion base pairs
- Human Genome Project is an international collaborative research effort (1998-2003) to sequence and map all genes in human beings (homo sapiens)

The Race!

- Most of the sequencing was performed in university and research centers in the USA, UK, France, Germany, Japan, China
 – Small-scale shotgun sequencing
- Parallel project conducted by private company Celera Genomics (Craig Venter)
 – Shotgun sequencing

Video Clips

• Private Project sequencing:

http://content.dnalc.org/content/c15/15537/private_project_sequencing.mp4 (http://www.dnalc.org/resources/3d/30-private-project-sequencing.html)

 Comparing Public & Private Project sequencing: http://content.dnalc.org/content/c15/15477/public_project_sequencing.mp4

(http://www.dnalc.org/resources/3d/28-public-project-sequencing.html)

(brackets) indicate links to same animation but with addition resources available on the webpage including the narrative.

Fredrick Sanger (1975)

- Developed dideoxy termination sequencing method
- 1980 received Nobel Prize in Chemistry for sequencing method
- 1958 received Nobel Prize in Chemistry for his work on the structure of insulin

Dideoxyribonucleotides (ddNTP)

- Di = two, Deoxy = removed oxygen
- Dideoxy NTPs have oxygens missing at both the 2' and 3' position

Recall: DNA Elongation

 What problem do you forsee if ddNTPs are used in replication?

Recall: Polymerization Reaction

 3'OH is needed to react with the phosphate group on the 5' end of the next nucleotide to form a phosphodiester bond

Dideoxyribonucleotides (ddNTP)

 When a ddNTP is RANDOMLY incorporated into the newly synthesized strand of DNA, synthesis stops

Sanger Sequencing

- Method is based on DNA replication by DNAP
- Materials:
 - DNAP
 - Primer (radioactive)
 - Template DNA
 - dNTPs (deoxyNTP)
 - ddNTPs (dideoxyNTP)

- Each test tube has deoxyA, G, C, T
- In addition each also has ONE of the 4 ddNTP

Tube A	Tube G	Tube T	Tube C
15% dATP			
25% dGTP			
25% dTTP			
25% dCTP			
10% ddATP			

 What do you think will happen if you allow DNA replication to occur in the presence of both deoxyATP and dideoxyATP?

Sanger Sequencing Process

- The newly synthesized strands of DNA have different lengths depending on when a ddNTP was incorporated into the strand
- The process is repeated 4 times, with different ddNTPs

• Complete the chart for the other tubes

Tube A	Tube G	Tube T	Tube C
15% dATP	25% dATP	25% dATP	25% dATP
25% dGTP	dGTP	25% dGTP	25% dGTP
25% dTTP	25% dTTP	dTTP	25% dTTP
25% dCTP	25% dCTP	25% dCTP	dCTP
10% ddATP			

Tube A	Tube G	Tube T	Tube C
15% dATP	25% dATP	25% dATP	25% dATP
25% dGTP	15% dGTP	25% dGTP	25% dGTP
25% dTTP	25% dTTP	15% dTTP	25% dTTP
25% dCTP	25% dCTP	25% dCTP	15% dCTP
10% ddATP	10% ddGTP	10% ddTTP	10% ddCTP

 Each reaction vessel only has ONE of the 4 possible ddNTPs

Sanger Sequencing Visualization

 The strands of different lengths will be separated using gel electrophoresis onto 4 lanes, one for each ddNTP reaction

Sanger Sequencing Visualization

Sequence Interpretation

- What information would you need to be given about this gel electrophoresis to be able to determine the 5' and 3' end of the sequence?
- Label the 5' and 3' ends of this DNA sequence

Sequence Interpretation

- What information would you need to be given about this gel electrophoresis to be able to determine the 5' and 3' end of the sequence?
- Label the 5' and 3' ends of this DNA sequence

A	с	G	Т	SEQUENCE (END)
			1010101	T (3')
	_			С
				С
		productor.		G
		telefeder		G
			-	Т
				G
				А
	-			С
				С
				G
			_	Т
				С
property.				A (5')

Example of a real sequencing gel

Sanger Sequencing Animation

- <u>http://content.dnalc.org/content/c15/15479/29_sanger_sequencing.mp4</u>
 (<u>http://www.dnalc.org/resources/3d/29-sanger-sequencing.html</u>)
 (<u>http://www.dnalc.org/view/15479-Sanger-method-of-DNA-sequencing-3D-animation-with-narration.html</u>)
- <u>http://smcg.ccg.unam.mx/enp-unam/03-</u>
 <u>EstructuraDelGenoma/animaciones/secuencia.swf</u>

(Brackets) indicate links to same animation but with addition resources available on the webpage including the narrative

Modern sequencing

- Theory is exactly the same as Sanger sequencing but the method is simplified
- 4 differently coloured fluorescent dyes used to label the 4 different ddNTPs in a single test tube
- All 4 fluorescent ddNTPs can be run on one lane on a gel electrophoresis

Modern sequencing

G Т **G** G G

GCGAATGCGTCCACAACGCTACAGGTG GCGAATGCGTCCACAACGCTACAGGT GCGAATGCGTCCACAACGCTACAGG GCGAATGCGTCCACAACGCTACAG GCGAATGCGTCCACAACGCTACA GCGAATGCGTCCACAACGCTAC GCGAATGCGTCCACAACGCTA GCGAATGCGTCCACAACGCT GCGAATGCGTCCACAACGC GCGAATGCGTCCACAACG GCGAATGCGTCCACAAC GCGAATGCGTCCACAA **GCGAATGCGTCCACA GCGAATGCGTCCAC** GCGAATGCGTCCA GCGAATGCGTCC GCGAATGCGTC GCGAATGCGT GCGAATGCG GCGAATGC GCGAATG GCGAAT

Modern sequencing

- Fragments are still separate by size but show up as coloured bands
- Colours have different wavelengths which can be read by a computer
- Computer translates the colours into the order of the nucleotides

Modern Sequencing

Modern Sequencing

• Given that the sequence in the diagram below is read 5' to 3' from left to right, which end of the diagram represents the positive end of the gel?

DNA Sequencing Activity

- Form groups of 4
- Read the instructions carefully!
- Each group should have 1 coloured paper (gel) and 4 white papers (sequences)
- Each person in the group should complete one sheet of white paper
- Once your group has finished, let your instructor know so that you can switch gels to practice reading each other's sequences