MEMBRANE STRUCTURE

Cell Fractionation Fluid Mosaic Model

Plasma Membrane

- Also known as the cell membrane
- All cells and organelles are surrounded by a flexible membrane

Organelle

- Organs:
 - specialized structures in the body that perform specific life processes
- Organelles:
 - specialized structures inside the cell that perform specific cellular processes
 - often surrounded by a membrane

Cell Fractionation

- A method of separating cell parts to study their function
- Homogenization: disruption of cell membrane without damaging organelle
- Centrifuge: instrument that spins at high speeds to separate contents by density

BREAKING CELLS AND TISSUES

The first step in the purification of most proteins is to disrupt tissues and cells in a controlled fashion.

> cell suspension or tissue

Using gentle mechanical procedures, called homogenization, the plasma membranes of cells can be ruptured so that the cell contents are released. Four commonly used procedures are shown here.

 break cells with high frequency sound

use a mild detergent to make holes in the plasma membrane

4 shear cells between a close-fitting rotating plunger and the thick walls of a glass vessel The resulting thick soup (called a homogenate or an extract) contains large and small molecules from the cytosol, such as enzymes, ribosomes, and metabolites, as well as all the membrane-bounded organelles.

When carefully applied, homogenization leaves most of the membrane-bounded organelles intact.

Cell Fractionation

©1999 Addison Wesley Longman, Inc.

Steps to Cell Fractionation

- 1. Homogenize
- 2. Centrifuge
 - Pellet: larger, more dense components
 - Supernatant: lighter, suspended in liquid above the pellet
- 3. Decant supernatant
- 4. Repeat centrifugation at higher speeds to separate into smaller components

Thought Questions

- Which centrifuged layer (supernatant or pellet) is transferred to the next fractionation step? Why?
- Which fractionation step produces the least dense organelles?
- What is the difference between each of the fractionation step?
- Why is this difference needed?
- List the 4 methods of homogenization

Fluid Mosaic Model

- Model developed by Singer and Nicolson (1972) to understand membrane structure
- Fluid implies movement on membrane
- Mosaic implies that the membrane consists of many different molecules

Topic List

- Membrane
 Composition
 - Phospholipids
 - Membrane Proteins
 - Integral
 - Peripheral
 - Carbohydrates
 - Cholesterol

- Membrane
 Characteristic
 - Fluidity
 - Asymmetry

Membrane Composition: Mosaic

- Plasma membrane is composed of many different molecules:
 - Phospholipids
 - Membrane Proteins
 - Integral
 - Peripheral
 - Carbohydrates
 - Cholesterol

Plasma Membrane Structure

- Cell membrane made of phospholipid
- Phospholipids also form the membrane around organelles

Phospholipid Bilayer

- Bilayer = 2 layers
- Each layer is called a leaflet and composed of phospholipids

Phospholipid Bilayer

- Water is on the intracellular and extracellular side
 - Cell is in a water (polar) environment
 - Cytoplasm (cell interior) is also a water environment
- Phospholipid arranged so that hydrophobic tails do not face water
 - Hydrophobic tails can not face outside or inside the cell
 - Hydrophobic tails face inwards forming a hydrophobic core
 - Hydrophilic heads face outwards

Types of Membrane Proteins

	Classification	Function
Integral	 Polytopic Transmembrane Single-pass Multi-pass Monotopic 	 Receptor Recognition Transport Channel Carrier / Pump Cell adhesion Anchoring Occluding Channel forming
Peripheral	ExtracellularIntracellular	CommunicationStructural support

Structural Classes of Integral Membrane Proteins

By Foobar - self-made by Foobar, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=802476

Structural Classes of Integral Membrane Proteins

- Polytopic: faces both sides of membrane
 - Transmembrane: spans entire phospholipid bilayer
 - Single-pass: crosses membrane once
 - Multi-pass: crosses membrane several times
- Monotopic: associated with membrane on one side (e.g. one leaflet), does not span entire bilayer

Types of Membrane Proteins

	Classification	Function
Integral	 Polytopic Transmembrane Single-pass Multi-pass Monotopic 	 Receptor Recognition Transport Channel Carrier / Pump Cell adhesion Anchoring Occluding Channel forming
Peripheral	ExtracellularIntracellular	CommunicationStructural support

Types of Transmembrane Proteins

Receptor Protein

Has a binding site for the ligand

Recognition Protein

• Glycoprotein: surface carbohydrate groups help identify cell (e.g. antigens)

Transport Proteins

- Channel
 - Un-gated (leak channels)
 - Gated (open or closed position)
- Carrier / Pump

Channel Proteins

- Act like tunnels
- Molecules move through protein passively (no energy involved)
- Moves small molecules or charged ions

Types of Channel Proteins

- Ungated (leak channels): always opened
- Gated: have open and closed conformations
 - Changes stimulated by changes in external environment

Carrier Proteins / Pumps

- Acts like a turnstile or revolving door
- Undergo conformational change to allow molecules through

Types of Membrane Proteins

	Classification	Function
Integral	 Polytopic Transmembrane Single-pass Multi-pass Monotopic 	 Receptor Recognition Transport Channel Carrier / Pump Cell adhesion Anchoring Occluding Channel forming
Peripheral	ExtracellularIntracellular	CommunicationStructural support

Cell Adhesion: Cell Junctions

- Structures that connect cell to cell
- Allow cells to adhere to each other
- Types:
 - Channel-forming junction
 - Occluding junction
 - Anchoring junction

Channel Forming: Gap Junctions

Gap junctions create gaps that connect animal cells.

Figure 8-13b part 2 Biological Science, 2/e

Occluding: Tight Junctions

Lumen surface

Tight junction

 Forms impermeable barrier between cells

http://cc.scu.edu.cn/G2S/eWebEditor/uploadfile/20120810143050626.jpg

Figure 8-9b Biological Science, 2/e

Occluding: Tight Junctions

 Think: Where in your body, would this be crucial?

Solution of tracer molecules

Figure 8-9b Biological Science, 2/e (a)

Anchoring: Desmosome

- Desmosomes bind to desmosomes on adjacent cells
- Attached to cytoskeleton
- Helps resist shearing force

Anchoring: Desmosome

Types of Membrane Proteins

	Classification	Function
Integral	 Polytopic Transmembrane Single-pass Multi-pass Monotopic 	 Receptor Recognition Transport Channel Carrier / Pump Cell adhesion Anchoring Occluding Channel forming
Peripheral	ExtracellularIntracellular	CommunicationStructural support

Peripheral Membrane Proteins

- Bound non-covalently to either surface of the membrane
- Function
 - Extracellular side: communication
 - Intracellular side: structural support

Extracellular Peripheral Protein: Communication

- Located on outer leaflet and surface
- Receptor and recognition proteins (which can also be integral)

Extracellular Matrix (ECM): Components

- A matrix of glycoproteins
- Secreted by cells
- Varies with type of tissue

Extracellular Matrix (ECM): Function

- Supports cell structure
- Anchors cell
- Separates tissues
- Functions in cell signalling

Intracellular Peripheral Protein: Structural

- Cytoskeletal protein
- Located on inner membrane surface
- Attached to cytoskeleton of cell
- Immobilized (anchored) on membrane

ecognition protein

phospholipid

receptor protein

transport protein

protein filaments

glycoprotein-

cytoplasm (inside)

Cytoskeleton

- A network of fibers extending throughout the cytoplasm
- Dynamic: can be quickly dismantled and reassembled in a new location

Cytoskeleton Component

- Microfilament: actin
- Intermediate filament
- Microtubules: tubulin

Cytoskeleton Component

Туре	Microfilament	Intermediate Filament	Microtubule
Structure	2 intertwined strands of actin	Fibrous protein supercoiled	Hollow tube of 13 tubulin columns
Diameter	7 nm	8-12 nm	25 nm
Diagram	893208883320988		

Cytoskeleton Component

Туре	Microfilament	Intermediate Filament	Microtubule
Intracellular Function	Maintain cell shape (e.g. furrow)	Anchorage of organelles and cytosolic proteins	Path for organelle, vesicle & chromosome movement (e.g. spindle fibers)
Other Function	Muscle contraction		Cell motility (e.g. cilia)

Cytoskeleton Component

Cytoskeleton

- Fluorescent light micrograph of fibroblast cells
- Nuclei (green)
- Cytoskeleton:
 - microfilaments
 (actin) (purple)
 - microtubules (yellow)

Carbohydrates

- Glycoprotein = carbohydrate + protein
- Glycolipid = carbohydate + lipid (phospholipid)
- Extracellular side
- Function of cell surface carbohydrates:
 - identifies the cell (like a name) helping other cells recognize it
 - acts as a signal for communication

Thought Question

- Of the component of the plasma membrane that was just studied, which would have an affect on the fluidity of the membrane?
 - Phospholipids
 - Proteins
 - Carbohydrates
- Explain.

Membrane Characteristic: Fluid

Membrane fluidity is affected by:

- Saturation of fatty acid
- Hydrophobic restrictions
- Cholesterol and temperature

Saturation of Fatty Acid

 Double bonds bends fatty acid chains preventing phospholipids from tight packing

tails with kinks

Saturated hydrocarbon tails

Movement within Membrane

- **1. Lateral Diffusion**: movement across same leaflet (phospholipids transpose with neighboring molecules)
- 2. Rotation: is when an individual molecule rotates quickly around its axis
- 3. Swing: from side-to-side
- 4. Flexion: contraction movement

Hydrophobic Restriction

- Transverse Diffusion (flip flop):
 - movement from one leaflet to the other
 - facilitated by enzyme flippase
 - rare because because the hydrophilic head of phospholipid must go cross the hydrophobic core to get to the leaflet

Hydrophobic Restrictions

(a) Movement of phospholipids. Lipids move laterally in a membrane, but flip-flopping across the membrane is quite rare.

Properties of Cholesterol

- Large molecular size
 - Can interrupt intermolecular forces of attraction
- Nonpolar
 - Stabilizes hydrophobic interactions

Properties of Cholesterol

- Explain which property of cholesterol plays a more significant role at:
 - Low temperature
 - High temperature
- Why is this advantageous for a cell?

Membrane Characteristic: Asymmetry

- Each leaflet has a different composition
- Leaflet facing the intracellular side has different components compared to the extracellular side
- Restrictions in the transverse (flip-flop) motion help to maintain this asymmetry

Question

If you were given an illustration of a cross-section of a cell membrane, describe two things that would help you identify the side that faces the outside environment.

HW Question Help

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.