MUTATIONS & REPAIR

Genetic Code Chapter 17: page 306-309 Mutations Chapter 17: page 322-325 Transposons Chapter 19: page 360-361

Table of Contents

- Characteristics of the Genetic Code
- Mutations
 - Origin of Mutation
 - Types of Mutagens
 - Types of DNA Mutations
 - Point Mutations
 - Functional Classes of Mutations
- Proofreading and Repair
- Transposons

Characteristics of the Code

- Universal
- Redundant
- Non-ambiguous

The Genetic Code is Universal

- All living things use the same 4 bases
- All living things use the same code: codons code for the same amino acid no matter what the organism

		Second base				
		U	С	Α	G	
	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G
· (5' end)	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG	CGU CGC CGA CGG	D C A G (3' end)
First base	A	AUU AUC AUA AUA	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	D A D C Third base
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G

Marshall Nirenberg (1961)

- Deciphered first codon
- Awarded Nobel Prize in 1968 for the interpretation of the genetic code
- Discovery Channel 100

 Greatest Discoveries –
 History of Genetics
 (Nirenberg @ 25:25-28:49)
 http://www.youtube.com/w
 atch?v=0qgMd0obEkc

Nirenberg's Experiment

- Synthesized artificial mRNA with identical RNA nucleotides
 - E.g. UUUUUUUUUUUUUUU
 - Thus only 1 type of codon (e.g. UUU)
 - Resulted only in one type of amino acid in the polypeptide (e.g. phenylalanine)
- Repeated with other nucleotides
- Other techniques used to decode mixed triplets

The Genetic Code is Redundant

- 64 different codons on mRNA
- But only 20 different amino acids
- Conclusion?

More than one codon can code for the same amino acid.

		Second base				
		U	С	Α	G	
	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G
(5′ end)	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG	CGU CGC CGA CGG	D C A G
First base	A	AUU AUC AUA AUA AUG Met or	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	D A C C Third base
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GAG	GGU GGC GGA GGG	U C A G

Characteristics of the Code

- Degenerate / Redundant
 - There are 64 codons, but only 20 amino acids
 - The same amino acid may be coded by more than one codon
 - E.g. GCU and GCC both specify alanine
- No ambiguity
 - Each codon only specifies one amino acid

The Genetic Code is Redundant

- 64 different codons on mRNA
- But only 45 different tRNA molecules
- Conclusion?

Some tRNAs recognize more than one codon.

		Second base					
		U	С	Α	G		
	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G	
(5 [′] end)	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG	CGU CGC CGA CGG	D C A G (3' end)	
First base	A	AUU AUC AUA AUA	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	D A O C Third base	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G	

Fig. 17.4

Wobble Hypothesis

- Base pairing rules are flexible in the wobble position
- Wobble position: third base of the mRNA codon and its corresponding tRNA anticodon

		Second base					
		U	С	Α	G		
	U	UUU UUC UUA UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G	
· (5′ end)	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG	CGU CGC CGA CGG	● O C A G (3' end)	
First base	A	AUU AUC AUA AUA	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	D A C C Third base	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G	

Fig. 17.4

tRNA Structure

Inosine in the wobble position

• Inosine:

- a modified form of adenine that is found in tRNA (anticodon)
- can form H bonds with U, C, or A on the mRNA

Inosine in the wobble position

Example:

- tRNA anticodon CGI
- Can bind to codons GCU, GCC and GCA
- All result in the addition of the amino acid alanine

		Second base					
	_	U	С	Α	G		
	U	UUU UUC UUA UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G	
(5' end)	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG GIn	CGU CGC CGA CGG	D A O C ∳ (3 [′] end)	
First base	A	AUU AUC AUA AUA	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	D A O C Third base	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G	

Fig. 17.4

Mutation

- a change in the genetic material of an organism
- genetic disorder or hereditary disease: harmful mutations in gametes that are passed onto the next generation

Origin/Cause of Mutation

• Spontaneous:

- errors in the genetic machinery during DNA replication
- due to enzymes
- Induced: arising from exposure to mutagenic agents
- Transposable elements:
 - errors during recombination (crossing over)
 - transposons

Types of Mutagens

- Mutagen: a substance that can cause mutations
- Physical mutagen
 - Radiation, UV light, x-rays
- Chemical mutagen
 - Base analogues
 - Intercalating agents
 - Base-Modifying agents

Physical Mutagen: UV light

- A common cause of DNA damage
- Produces pyrimidine dimers (a type of fused base)

Xeroderma Pigmentosum (XP)

Definition

- Xeroderma = dry skin
- Pigmentosum = change in pigmentation
- An autosomal recessive genetic disorder
 - unable to repair damage caused by UV light
 - mutation in an enzyme in the NER
- Individuals may need to avoid sunlight completely ("children of the night")
- Leads to early skin cancer

Chemical Mutagen: Base Analogs

- Structurally similar to normal DNA bases (mimic)
- May get incorporated instead of the normal base
 - E.g. thymine is replaced with 5-bromouracil

Chemical Mutagen: Base Analogs

- Pairs incorrectly during DNA replication
 - E.g. 5-bromouracil can pair with G instead of A
- Used in a drug for treating HIV

Chemical Mutagen: Intercalating Agent

- Distort DNA helix intercalating between adjacent base pairs
- May cause DNAP to "stutter" and copy the mutagen as an extra base pair
- May interfere with replication
- Commonly used for staining and visualizing DNA in biotechnology (e.g. ethidium bromide)

Chemical Mutagen: Base Modifying Agent

Types of DNA Mutations

- Chromosomal mutations
 - Occurs during meiosis (e.g. crossing over)
- Missing bases
- Fused bases
 - Pyrimidine dimers (e.g. xeroderma pigmentosum)
- Mismatch mutations:
 - incorrectly paired bases
 - caused by point mutations
 - one of the most common types of errors during replication

Point Mutations

- One nucleotide (or a base pair) is altered
- Types of point mutations:
 - Substitution
 - Transition
 - Transversion
 - Frameshift
 - Insertion
 - Deletion

Substitution

• A small change in a DNA base pair where one nucleotide is replaced with another

- Transition:
 - purine to purine
 - pyrimidine to pyrimidine
- Transversion:
 - purine to pyrimidine
 - pyrimidine to purine

Frameshift Mutation

- Reading frame: triplet grouping (codons) of a genetic message
- Frameshift mutation: number of nucleotides added/lost is not a multiple of 3 thus altering the reading frame
 - Insertion: addition of one or more nucleotide pairs in a gene
 - Deletion: loss of one of more nucleotide pairs in a gene
- No frameshift: number of nucleotides added/lost is a multiple of 3
 - Leads to extra or missing amino acid

• Frameshift deletion

• Frameshift insertion

Missing

No frameshift

Functional Classification of Mutations

- Effects on amino acid sequence (polypeptide):
 - Missense
 - Nonsense
 - Silent
- Effect on protein function:
 - Negative
 - Positive
 - Neutral

Effects of mutations on polypeptide

Class	Effect on amino acid sequence	Effect on protein function	Example
Missense	 Codes for different amino acid 		 Sickle Cell Anemia A instead of G A U G A A G U U U A G C U A A Met Lys Phe Ser Stop
Nonsense	 Codes for a stop codon Results in truncated polypeptide 		U instead of A AUGUAGUUUGGCUAA Met Stop
Silent	 Codes for same amino acid 		U instead of C AUGAAGUUUGGUUAA Met Lys Phe Gly Stop

Effects of mutations on polypeptide

Class	Effect on amino acid sequence	Effect on protein function	Example
Missense	 Codes for different amino acid 	 May or may not change 	 Sickle Cell Anemia A instead of G A U G A A G U U U A G C U A A Met Lys Phe Ser Stop
Nonsense	 Codes for a stop codon Results in truncated polypeptide 	 Most of these mutated proteins are digested by the cell. Mutations are often lethal at the embryonic stage. 	U instead of A AUGUAGUUUGGCUAA Met Stop
Silent	 Codes for same amino acid 	 No change 	U instead of C AUGAAGUUUGGUUAA Met Lys Phe Gly Stop

Missense Mutation

Example: Sickle Cell Anemia

 Substitution missense: A → T changes amino acid glutamine to valine

HBB Sequence in Normal Adult Hemoglobin (Hb A):

Nucleotide	стб	АСТ	сст	GAG	GAG	AAG	тст
Amino Acid	Leu I 3	Thr	Pro	Glu I 6	Glu	Lys	Ser I 9

HBB Sequence in Mutant Adult Hemoglobin (Hb S):

Nucleotide	CTG	ACT	сст	GTG	GAG	AAG	тст
Amino Acid	Leu I 3	Thr	Pro	Val I 6	Glu	Lys	Ser I 9

Nonsense Mutation

Silent Mutation

		Second base					
	U		С	C A			
	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G	
) (5' end)	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG	CGU CGC CGA CGG	UCAG	
First base	A	AUU AUC AUA AUA	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	D A O C Third base	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG	GGU GGC GGA GGG	U C A G	

Wild Type: Two men sat and had hot tea

Classify these "mutations":

- Two men Sat and had hot tea
- Two men sat and had hot sea
- Two me.
- Two men sat and had hot te a
- Two mes ata ndh adh ott ea

Silent

Missense Nonsense Frameshift Insertion Frameshift Deletion

Point/Frameshift Mutation Summary

Types	Missense effect	Nonsense effect	Silent
Point Mutation Substitution			
Frameshift Insertion or Deletion			
No Frameshift Insertion or Deletion			

Point/Frameshift Mutation Summary

Types	Missense effect	Nonsense effect	Silent
Point Mutation Substitution	\checkmark	\checkmark	✓
Frameshift Insertion or Deletion	✓ extensive	~	×
No Frameshift Insertion or Deletion	✓ (extra or missing amino acid)	✓	×

Effect of mutation on protein function / organism

Effect	Protein function	Cause	Example
Negative	Detrimental to the organism	Missense or nonsense mutations	 most molecular biological research is related to this idea
Positive	Benefits the organism	Missense mutations	 back mutations / reversions that restore original sequence antibiotic resistance
Neutral	No change	Silent or sometimes missense mutations (change in amino acid but without changing protein function)	 mutations in non-coding regions (e.g. introns)

Proofreading and Repair

- Error Rate
- Repair methods
 - Exonuclease: Mechanisms in place to proofread errors as DNA is being replicated
 - Endonuclease: Cell also continuously monitors and repairs DNA outside of replication

Error Rate

- Average human chromosome has 150,000,000 bp
- Initial pairing error: 1 in 10,000 bp
 = 15,000 errors per replication
- Final error: 1 in 1,000,000,000 bp
 - = 0.15 errors per replication
 - = 1 error in ~7 replication

Thought question: What happened in between the initial and final error rate that could explain this difference?

Repair by Nuclease

- Nuclease: an enzyme that can break phosphodiester bonds in DNA thus excising out the nucleotide
 - Exonuclease: binds to ends of nucleotide chain (5' or 3')
 - Endonuclease: binds to the middle of a nucleotide chain

Exonuclease Proofreading

- Instantaneous repair:
 - Occurs as the DNA is replicating
 - Due to errors during elongation at the 3' end
- DNAP III and DNAP I both have exonuclease activity

Exonuclease Proofreading

- Mechanism of repair:
 - DNAP instantly recognize mismatches during replication
 - hydrolyze the phosphodiester bond releasing the last nucleotide that was just added (exonuclease activity)
 - replaces with the correct nucleotide (polymerase activity)
- Note: one enzyme (DNAP) does both the nuclease and polymerase function

Endonuclease Proofreading

- Repair often occurs after DNA is already replicated
- Mechanism of repair known as nucleotide excision repair (NER)

Endonuclease Proofreading: NER

- Endonuclease:
 - recognizes and binds to error
 - nicks the strand by breaking phosphodiester bonds
 - error is excised (removed)
- Polymerase: replaces the gap with the correct nucleotides
- Ligase: seals the nick
- Video: Repair thymine dimers (1:11)
 https://www.youtube.com/watch?v=azszodOhXqk&index= 54&list=PLXwnjgs_UWpJLSTT_BHTbJvZgRiYS5kf1

HW Question

• The genetic code is redundant but not ambiguous. Explain what that means.