Kingdom Archaea

Scientists believe that Archaea are the first living things on Earth because...

They thrive in extreme conditions that mimic the Earth's early atmosphere

Kingdom Archaea

Examples of extreme conditions:

boiling/acidic water
hydrothermal vents
super-salty pools
Antarctic permanent ice

These are conditions that would normally kill other creatures, thus Archaea are classified by the type of environment they thrive in.

Six Kingdoms

Kingdom Archaea

Examples of extreme conditions:

boiling/acidic water
hydrothermal vents
super-salty pools
Antarctic permanent ice

Three Groups of Archaea

Thermoacidophiles

Able to tolerate extreme temperature & acidity Example: volcanoes, hot springs Energy obtained from sulfur

Halophiles Thrives in high salt environments Example: Dead Sea Energy obtained from organic food molecules and light

Methanogens Lives in oxygen free environments Example: swamp, marsh, sewage Energy obtained by converting inorganic molecules leaving methane gas as a waste product

Kingdom Bacteria

Beneficial Bacteria

Nitrogen cycle: bacteria critical to soil fertility, converts ammonia to usable compounds: ammonia → nitrite → nitrate

Certain bacteria makes foods edible: vinegar, butter, cheese, yogurt, and sour-dough bread

Bacteria in Industry

Bacteria used in sewage treatment, odor control, and septic tank maintenance: digests organic matter and waste

Bacteria in Disease

Tuberculosis

Lysteriosis

Lyme disease

Gonorrhea

Meningitis

Streptococcus mutans → tooth decay
Clostridium botulinum → food poisoning
Treponema pallidum → syphilis

Bacterial Classification

Shape – 3 types (more details to follow)
Cell Wall – 2 types (more details to follow)
Energy Source – 2 types

Photosynthetic: obtain energy from light
Chemosynthetic: obtain energy from inorganic

compounds

Bacterial Shapes - general

- Cocci (*singl.* coccus) round
- Resists drying
- Bacilli (bacillus) rod-shaped
 Absorbs more nutrients due to greater surface area

Spirilli (spirillum) – spiral-shaped
Moves through fluids with the least resistance

Bacterial Shapes

Bacterial Shapes

ame beee

Spirilli

Bacilli

Cocci

Bacterial Shapes

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Diversity of bacteria

© R.G. Kessel - C.Y. Shih/Visuals Unlimited

C David M. Phillips/Visuals Unlimited

C David M. Phillips/Visuals Unlimited 250 nm

in chains

a. A spirillum with flagella

b. Bacilli in pairs c. Cocci

Groupings

- Prefix *diplo-*
- Arranged in pairs

Prefix *staphylo-*Arranged in clusters (like grapes)

Prefix *strepto-* Arranged in chains

Groupings

Practice Naming Bacteria

F G

Answers:

- A. Staphylococci
- B. Streptococci
- C. Diplobacilli
- D. Streptobacilli
- E. Streptococci
- F. Diplospirilli
- G. Streptobacilli

Diversity within shapes – getting more specific

Bacterial Cell Wall Structure

1884: Hans Grams discovered a method of classifying bacteria using what is now named the

"Gram Stain."

What is Gram Stain?

A dye that highlights basic differences in the arrangements of molecules in bacterial cell walls Purple stain
Thick protein layer

Gram-positive

Pink stain

Thin protein layer

Gram-negative bacilli from a pneumonia infected lung

Examples of Gram Stains

Gram-positive Staphylococcus aureus

Mixture: gram-negative (pink) bacilli and gram-positive (purple) cocci

Gram-positive <u>anthrax</u> bacteria (bacilli) in cerebrospinal fluid sample. If present. (The other cells are white blood cells).

Antibiotics and Antibiotic Resistance

- Antibiotics are extremely useful in curing diseases and saving lives
- Antibiotics kill bacteria by weakening its cell wall
- Some bacteria develop resistance to antibiotic and can therefore survive and reproduce. Therefore the overuse of antibiotics can cause bacteria to adapt and become resistant

Asexual Reproduction

(no mixing of genetic material between organisms)

through... BINARY FISSION

Binary = 2 Fission = division / split

A type of cell division where 2 genetically identical products of the same size are formed

Occurs when conditions are favourable and constant (predictable). But why?...

Sexual Reproduction

(mixing of genetic material between organisms)

through... CONJUGATION

Occurs when conditions begin to alter such that it's less than ideal. What advantage does this have?...

- 1. Cells linked by a bridged structure called the pili (pilus)
- 2. Genetic information passes through pili from one cell to another
- 3. Receiving cell undergoes binary fission

Sexual Reproduction

(mixing of genetic material between organisms)

through... CONJUGATION

Sex pilus –

Sexual Reproduction

(mixing of genetic material between organisms)

(a) Conjugation and transfer of an F plasmid from an F⁺ donor to an F⁻ recipient

(b) R-plasmid carries genes for antibiotic resistance

Spore Formation

(no growth, dormancy)

- During unfavourable conditions, a bacteria enters a <u>dormant</u> phase to protect itself.
- It forms a tough outer covering to enclose its DNA. The resulting product looks like a seed and is called an <u>endospore</u>.
- When favourable conditions return, endospore loses its outer coat allowing the bacteria to grow again.

Kingdom Fungi

Mold

Yeast Mushroom

Fungi Structure

Mushroom: Specialized reproductive part of fungus

Hyphae: network of fine filaments

Septum: porous walls that divide the hyphae into cells

Chitin: material that forms the cell wall of fungi

Mycelium: loose, branching network of hyphae under the soil making up the main bulk of a fungus

The septa of a hyphae is often porous (pictured below)

-this allows cytoplasm to travel through it

Process of Extracellular digestion

- **1.Hyphae releases digestive enzymes over its food**
- 2. Molecules that are broken down outside the body then diffuse in
- 3. The more extensive the mycelium, the greater the surface area for absorption

Mutualism	
Commensalism	
Parasitism	

Mutualism + / +	
Commensalism	
Parasitism	

Mutualism + / +	<i>E. Coli</i> in human intestine <i>E. Coli</i> receive food / shelter Humans receive vitamins
Commensalism	
Parasitism	

Mutualism + / +	<i>E. Coli</i> in human intestine <i>E. Coli</i> receive food / shelter Humans receive vitamins
Commensalism + / 0	
Parasitism	

Mutualism + / +	<i>E. Coli</i> in human intestine <i>E. Coli</i> receive food / shelter Humans receive vitamins
Commensalism +/0	Barnacles on jaws of whale Barnacles eat food filtered by whale. No effect on whale.
Parasitism	

Mutualism + / +	<i>E. Coli</i> in human intestine <i>E. Coli</i> receive food / shelter Humans receive vitamins
Commensalism + / 0	Barnacles on jaws of whale Barnacles eat food filtered by whale. No effect on whale.
Parasitism + / -	

Mutualism + / +	<i>E. Coli</i> in human intestine <i>E. Coli</i> receive food / shelter Humans receive vitamins
Commensalism + / 0	Barnacles on jaws of whale Barnacles eat food filtered by whale. No effect on whale.
Parasitism + / -	Many diseases: malaria, tetanus Mistletoe grow on host trees. Uses trees to obtain nutrients.

Mutualism

Commensalism

HEARTWORMS

Parasitism

Barnacles on whale

- ectocommensalism

Mistletoe on tree

- ectoparasitism

Symbiotic Associations

Ectosymbiosis	
Endosymbiosis	

Symbiotic Associations

Ectosymbiosis	One organism lives on the surface another organism (e.g. barnacles on whales, mistletoe on trees)
Endosymbiosis	

Symbiotic Associations

Ectosymbiosis	One organism lives on the surface another organism (e.g. barnacles on whales, mistletoe on trees)
Endosymbiosis	One organism lives within the tissue of another organism (e.g. <i>E. coli</i> in humans, malaria, tetanus)